
Communications to the Editor 3997 

CH, 

I Ph C H 2 - N - C 6 H 5 

H 

DDQ (9) 

provides a rapid channel for nonradiative decay in this 
system.28 

The results observed with the luminescent palladium por­
phyrins and DMA appear closely related to those previously 
obtained with long-lived but nonemitting triplets of zinc and 
magnesium porphyrins with accetpors such as aromatic nitro 
and halogen compounds.21'22 Here initial apparent quenching 
is followed by formation of relatively long-lived complexes 
having transient spectra very similar to the uncomplexed me-
talloporphyrin triplet. For these systems too it can be concluded 
that charge-transfer interactions play a limited role and that 
the exciplex is nonpolar. Since weak complex formation is a 
fairly general phenomenon in the ground state, there is no 
reason why phenomena similar to those reported in the present 
study should not occur for a variety of substrates having long 
excited-state lifetimes and that such very weak exciplexes could 
be frequent but masked precursors to photoproducts. 
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Thermally and Photochemically Induced Shifts of Silicon 
on the Phenalene Ring System 

Sir: 

In recent years there has been a great deal of interest in the 
fluxionality and sigmatropic behavior associated with a- and 
7r-bonded metal derivatives of organic IT ligands, among them 
being metal derivatives of cyclopentadienyl, indenyl, cyclo-
heptatrienyl, cycloheptatriene, and cyclooctatetraene.1 Su, in 
a theoretical paper describing the nature of several of these 
reactions, suggested that one could explore these reactions 
(metallotropic shifts) more deeply and in entirely new ways 
by using new organic 7r ligands.2 We suggest that the phen-
alenyl ring system (1) is an excellent choice for this purpose 

b) R1 - D, 

because (1) it possesses high symmetry (£3/,); (2) both a- and 
7r-bonded metal complexes are possible;3 and (3) for a given 
derivative, several metal shifts, some of which are unique here, 
are possible. Consider, for example, the a complex 1-tri-
methylsilylphenalene (2a). Here there are possibly three 
nonequivalent 1,3-silicon shifts, to C-3, -9, and -13,4 and two 
nonequivalent 1,2 shifts, to C-2 and -11. We wish to report our 
results pertaining to the thermally and photochemically in­
duced sigmatropic shifts of silicon on 2. 

Silane 2a,5 which was prepared by the reaction of the phe-
nalenyl anion with trimethylsilyl chloride, in C(X>b is non-
fluxional on the NMR time scale at temperatures up to 185 
0 C, 6 with studies at high temperatures being precluded by 
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competing irreversible hydrogen shifts.7 An attempt to observe 
a sigmatropic shift at 150 0C, where hydrogen shifts are slow, 
by a Forsen-Hoffman spin saturation experiment8 was also 
unsuccessful. A thermal shift of silicon was finally observed 
by using the deuterium-labeled silane 2b.9 The reaction in 
C6D6 (unimolecular,10 £ a ~ 27 kcal/mol11) was monitored 
by observing the increase in the H-I signal in the 1H NMR 
spectrum. The equilibrium value for the H-I NMR signal at 
all temperatures was found to be 50% of that for H-2, which 
was used as an internal standard. These results rule out a 
cleavage recombination mechanism and indicate that a single 
1,3 shift of silicon,12 either to C-3 or -9, is occurring. The re­
versible shift between rings to C-9 was shown to be the correct 
choice by analysis of the H-2 NMR pattern as a function of 
time.13 The observed isomerization of 2, it should be noted, 
represents one of the very few 1,3-sigmatropic shifts of silicon 
observed to date.'2 

Photolysis of the above thermally equilibrated sample led 
to an increase in the H-I NMR signal until an equilibrium 
value close to 85% of that for H-2 was attained.14 The deute­
rium label had clearly been randomized at all six corner sites 
on 2. Three mechanisms can be invoked to explain the results: 
(I) a cleavage recombination mechanism, (2) a photochemi-
cally induced 1,3 shift of silicon to C-13 followed by a thermal 
(and random) 1,3 shift back to the corner carbons, and (3) 
competing 1,3 shifts to C-3 and -9. The photolysis of 2c15 in­
dicates that only this last possibility is correct. 

The photolysis of 2c could be followed by observing the 
disappearance of the H-I signal in the 1H NMR spectrum and 
the appearance of the corresponding H-3 and H-9 signals. In 
the very first part of the reaction, where the buildup of the H-3 
and H-9 signals16 should give a good estimate of relative 
amounts of shifts to C-3 and -9, respectively, the H-9 signal 
increased much more sharply than the H-3 signal.17 One can 
deduce from these observations that both silicon shifts occur, 
with the shift to C-9 proceeding at least five times more rapidly 
than the shift to C-3. 

1,2 shifts of silicon on the phenalenyl ring system are also 
possible. Photolysis of 318 at —70 0C yields 2a cleanly. Based 

on the work of Michl19 on the unsubstituted cyclopropane, it 
is clear that this reaction occurs by initial photochemical 
cleavage of the central cyclopropane bond to yield the biradical 
4 followed by a thermal 1,2 shift of silicon.20 Interestingly, the 
reverse 1,2 shift, i.e., 2—>- 4, during the thermolysis of 2 can be 
ruled out on energy considerations.21 

The above results on 2 can be interpreted, at least in part, 
in terms of an admixture of the Woodward-Hoffmann rules 
and steric considerations. Thermally, a 1,3 shift of silicon 
should occur with inversion at the silicon, with the shift be­
tween rings to C-9 yielding less steric interaction between the 
phenalenyl ring and the methyl groups attached to the silicon 
than the corresponding shift within the ring to C-3. Photo-
chemically, the silicon should migrate with retention of con­
figuration, with the shifts between rings and within the ring 
having comparable steric requirements. The regioselectivity 
observed in the photochemical case, of course, cannot be ex­
plained as simply as in the thermal case. We will reserve dis­
cussion of this point to our full paper. 

It is clear from the above that c-bonded metal derivatives 
of 1 can be used to study the regioselectivity of thermally and 
photochemically induced metallotropic shifts. It is also clear 
that to attain a fluxion or ring whizzing phenalene will require 

metals which will undergo a 1,3 shift with a low energy of ac­
tivation, and uranium and thorium seem to fit this require­
ment.23 Studies in this area are continuing. 
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